Spettroscopia UV-vis

Spettroscopia UV-vis

La spettroscopia UV-vis è una tecnica molto utilizzata in chimica analitica e sfrutta l’interazione fra la luce e la materia. A differenza della spettroscopia IR in questa tecnica si eccitano i livelli elettronici della molecola.

Questa spettroscopia è usata in laboratorio per analisi quantitative, misura la concentrazione di molecole che assorbono nello spettro UV (100-400 nm) e visibile (400-700 nm).

La legge più importante per la quantificazione dell’analita con spettroscopia UV-vis è la legge di Lambert-Beer.

Questa legge afferma che:
La quantità di luce monocromatica assorbita (A) da una soluzione è funzione della concentrazione (c) della sostanza assorbente e della lunghezza del cammino ottico (b).

A = ε b c

legge di lambert-beer

ε è il coefficiente di assorbività molare tipico per ogni sostanza.

Per svolgere le analisi sui campioni si usa lo spettrofotometro UV-vis, uno strumento che permette di misurare l’intensità luminosa assorbita dalle sostanze.

Affrontiamo la struttura dello spettrofotometro in questa pagina, dove trattiamo in maniera più approfondita tutte le sue parti e la costruzione di un colorimetro con Arduino.

Le analisi quantitative più comuni sfruttano il metodo di analisi degli standard esterni. Il chimico prepara* una serie di soluzioni a concentrazioni note contenenti l’analita di interesse. L’assorbanza di queste soluzioni è misurata e si costruisce una retta di calibrazione, cioè una retta che riporta le concentrazioni sull’asse delle ascisse (x) e i valori di assorbanza sull’asse delle ordinate (y).

Con la regressione lineare si trova la retta che approssima meglio tutti i punti sperimentali. Una volta misurata anche l’assorbanza del campione a concentrazione incognita si usa l’equazione della retta di regressione per calcolare la concentrazione. Questo metodo funziona bene solo se la concentrazione del campione incognito è compresa nel range delle soluzioni standard.

Esistono molte altre tecniche di analisi e metodi analitici più complessi che sfruttano la spettroscopia UV-visibile.

Makers ITIS Forlì: https://www.makers-itis-forli.it 

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Zucche fluorescenti

Zucche fluorescenti

Quale periodo migliore se non Halloween per parlare delle zucche fluorescenti ?

Non servono strani incantesimi per impressionare e stupire le persone ma basta solo conoscere un po’ di chimica. In questa pagina vi spiego come ottenere dei bellissimi effetti speciali partendo da materiali di uso comune.

Zucche fluorescenti

Per osservare questo fenomeno molto suggestivo servono poche e semplici cose: semi di zucca, alcol o acetone, frullatore o mortaio e una luce UV (torcia UV su qualsiasi e-commerce).

In realtà non sono le zucche ad essere fluorescenti, ma i loro semi, per questo possiamo inventarci dei modi fantasiosi per sfruttare a nostro vantaggio questa proprietà chimica.

Procedimento*


Puliamo i semi di zucca dalla polpa ancora attaccata e sciacquiamoli con acqua. Asciughiamoli con un foglio di carta assorbente o con un canovaccio e sminuzziamoli finemente con un frullatore o un mortaio.

Una volta finito di triturare i semi si presenteranno come una pasta o una granella (a seconda dell’umidità di partenza). Ai semi sminuzzati si aggiunge dell’alcol o dell’acetone e si mescola con cautela.

Finita la fase di omogeneizzazione e mescolati accuratamente i semi triturati con il solvente si illumina il miscuglio con la luce UV della torcia. Si noterà una fluorescenza molto intensa di colore rosso/arancione sprigionarsi dalla soluzione.

L’effetto è visibile anche se si usa acqua invece di alcol o acetone ma l’intensità luminosa della fluorescenza sarà minore.

Spiegazione

Nei semi di zucca sono presenti delle sostanze chimiche naturali che emettono una luce colorata se illuminate con la luce UV. Lo stesso fenomeno lo abbiamo già incontrato QUI con la curcuma. Gli stessi procedimenti estrattivi sono applicabili anche con i semi di zucca.

vitamina B2
protoclorofillide

Tra le tante sostanze chimiche contenute nei semi di zucca ci concentriamo su: vitamina B2(riboflavina) e sulla protoclorofillide. Queste due sostanze naturali presentano una spiccata fluorescenza.

La vitamina B2 che si trova facilmente in farmacia è solubile in acqua e presenta una fluorescenza giallo/verde 533nm, mentre la protoclorofillide è una molecola precursore della clorofilla e presenta una fluorescenza rossa 647nm.

Con questo semplice trucco noi makers vi auguriamo buon Halloween e di stupire tutti i vostri amici con la “magia della chimica”

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Makers ITIS Forlì: https://www.makers-itis-forli.it 

Facciamo il sapone con i makers

sapone marsiglia

La chimica ci circonda e ci aiuta nella vita di tutti i giorni, anche quando facciamo le pulizie. In questa pagina otteniamo il sapone partendo da prodotti di scarto e scopriamo qualche curiosità su questa sostanza miracolosa.

Storia

Le prime fonti dell’invenzione del sapone risalgono al 2200 a.C. Su una tavoletta babilonese si descrive la procedura per ottenere il sapone unendo acqua, sostanze alcaline e olio.

La prima sostanza alcalina o basica prodotta per la saponificazione è la potassa (idrossido di potassio) che veniva ottenuta bollendo la cenere in acqua. La soda (idrossido di sodio) veniva invece prodotta bollendo la cenere della salicornia una pianta ricca di sodio.

In Egitto l’uso del sapone per la pulizia dei tessuti risale al 1550 a.C. , fatto testimoniato dal papiro di Ebers.
Il sapone non veniva usato per la pulizia personale dagli egizi perché era troppo aggressivo, le giuste proporzioni per ottenere un sapone adatto alla pelle vengono scoperta dagli arabi.

Anche i romani conoscevano il sapone anche se preferivano usare altre tecniche per la pulizia personale. Plinio il vecchio descrive in Historia Naturalis un metodo che usavano i galli per pulire i capelli con un prodotto ottenuto dal sego (grasso animale) e calce.

Il sapone viene importato in Europa dai mercanti genovesi e veneziani ed era considerato un bene di lusso molto raro e difficile da ottenere. I primi prodotti ottenuti da grasso animale erano maleodoranti e vennero subito rimpiazzati da oli vegetali profumati.

Durante il medioevo i maggiori produttori di sapone sono Savona e Marsiglia. Ancora oggi esiste il sapone di Marsiglia preparato da olio di oliva, soda caustica, acqua e sale.

Gli inventori del sapone per uso personale furono gli arabi, con prodotti profumati che potevano essere solidi o liquidi e di diversi colori.

Il sapone di Aleppo è prodotto con olio di oliva, timo e alloro con soda caustica. L’olio di alloro produce un sapone più schiumoso.

Chimica del sapone

Il sapone è un sale di metalli alcalini (sodio, potassio, litio, ecc…) e di un acido grasso. Nei saponi di origine naturale si parte da oli vegetali o da grasso animale e da basi forti (soda o potassa caustica).

La base forte in ambiente acquoso idrolizza i trigliceridi degli oli vegetali o dei grassi producendo un alcol detto glicerolo (o glicerina) e un sale. In parole povere la base rompe i trigliceridi in catene di acidi grassi per poi neutralizzarle.

saponificazione

I grassi e gli oli sono composti da diversi tipi di trigliceridi che influiscono in maniera differente sulle proprietà chimiche e fisiche del prodotto finale. L’olio di oliva ha una grande quantità di acido oleico nei propri trigliceridi, ma contiene anche acido palmitico, stearico e linoleico.

Anche il tipo di metallo alcalino usato nella saponificazione influisce sulle proprietà del prodotto finale. I saponi di litio e sodio sono più duri rispetto a quelli ottenuti con il potassio (generalmente liquidi) mentre i saponi di altri metalli (calcio, rame, magnesio, ecc…) sono insolubili in acqua.

molecola di sapone
oleato di sodio

La molecola di sale ottenuta nella reazione di saponificazione è formata da due parti: una testa polare (idrofila), e una coda apolare (idrofoba).

La testa della molecola che contiene le cariche di segno opposto è affine all’acqua mentre la coda senza cariche derivante dall’acido grasso è affine alle sostanze organiche apolari (oli, grassi, ecc…) e non all’acqua.

sapone sull'acqua

La molecola di sapone perciò ha una doppia natura, ha una testa che si lega a sostanze polari ed una coda che si lega a sostanze apolari. Questo tipo di molecole si dicono antifiliche e fanno da ponte tra sostanze di natura opposta (acqua e olio).

Il sapone ad una certa concentrazione si dispone con la testa polare rivolta verso l’acqua e la coda a contatto con l’aria.

formazione di micelle

Appena una sostanza apolare (grasso, olio, sporcizia, ecc…) tocca le code si lega e forma un guscio di molecole di sapone detta micella. Le micelle sono libere di muoversi dentro l’acqua perché la loro parte esterna è polare e contengono al loro interno lo sporco.

Una volta intrappolate le sostanze apolari dentro le micelle, si possono sciacquare via con facilità usando l’acqua.

Questo meccanismo imita il passaggio di sostanze attraverso le membrane delle cellule che sono composte da molecole (fosfolipidi) don la stessa “forma” del sapone .

Il sapone interagisce con il fluido in cui si trova perciò ne modifica le proprietà, una di queste è la tensione superficiale. Per questo motivo le molecole del sapone vengono chiamate tensioattivi.

Saponi nell’arte e nei mestieri*

Esistono varie tipologie di sapone prodotte nell’arco della storia dell’uomo e ne esisteranno molti altri in futuro. Il sapone di Marsiglia usato per il bucato è un esempio di un prodotto solubile in acqua, in particolare un oleato di sodio.

I saponi a base di metalli differenti dal sodio e dal potassio che sono addirittura insolubili in acqua (come gli oleati di rame, calcio e litio) possono sembrare inutili e bizzarre, ma in realtà trovano diversi impieghi nel mondo dell’arte e della meccanica.

Nei dipinti ad olio si formano spontaneamente saponi metallici; in molti di essi i restauratori hanno notato dei piccoli granelli simili all’acne sulla superficie della pittura.

Questa “malattia” nasce dalla reazione chimica tra gli acidi grassi usati come leganti e i pigmenti metallici, solitamente sono ossidi di piombo e zinco. Questi saponi si aggregano e si accumulano scrostando la vernice dalla tela del dipinto.

Il sapone però non è solo una sostanza dannosa nel mondo dell’arte. Le saponette possono essere prodotte con diversi colori, fantasie e forme dando la possibilità all’artista di esprimere le proprie idee.

sculture di sapone

Molti manufatti artistici vengono incisi artigianalmente partendo da blocchi di sapone, impiegando solo scalpelli e coltelli. Fiori, foglie ed altri oggetti possono essere inglobati in blocchi di sapone trasparente ed essere preservati per lungo tempo.

I saponi di calce trovano impiego nel mastice usato dai vetrai, molto resistente al calore e ottimo per immobilizzare il vetro.

Facciamo il sapone

Per preparare il sapone abbiamo bisogno di:

  • olio
  • idrossido di sodio NaOH
  • agitatore magnetico riscaldante

Per ogni grammo di olio bisogna aggiungere 0.140 g di idrossido di sodio.

Per esempio usiamo 75 g di olio di recupero e 10.5 g di soda caustica.

È importante sciogliere la soda caustica nel minor quantitativo di acqua distillata facendo molta attenzione a dissipare il calore prodotto dalla reazione esotermica.

Scaldiamo l’olio ad una temperatura di 50°C mescolando costantemente e aggiungiamo a filo la soluzione concentrata di idrossido di sodio. Durante questo passaggio non bisogna usare fiamme libere (es. fornelli, bunsen, ecc…) perché l’olio a contatto con la soluzione acquosa potrebbe schizzare ed incendiarsi.

Si forma una dispersione di piccole goccioline dentro le quali avviene la reazione di saponificazione.

L’emulsione formata si mantiene stabile se la quantità di acqua non è eccessiva e l’agitazione è molto vigorosa.

Mescoliamo vigorosamente per almeno 30 minuti fino ad una consistenza cremosa del composto. Si può lavare il sapone ottenuto con almeno tre lavaggi con una soluzione di NaCl satura.

Far stagionare il sapone per almeno 40 giorni in stampi per permettere l’essiccazione e il completamento della reazione.

Bibliografia

Scientific soapmaking – The chemistry of the cold process di Kevin M.Dunn – Clavicula press, Farmville, VA

Soap manufacturing technology – Luis Spitz editor – AOC Press, Urbana, Illinois

Trattato compiuto di Farmacia teorica e pratica. Quarta edizione …, Volume 2
By Julien Joseph Virey

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Davide Di Stasio
Latest posts by Davide Di Stasio (see all)

Maschera di Bahtinov con stampa 3D

Maschera di Bahtinov con stampa 3D

Quando puntiamo un corpo celeste come una stella vogliamo essere sicuri di aver messo correttamente a fuoco e cogliere l’immagine senza problemi. Per questa esigenza ci viene in contro un oggetto tanto semplice quanto geniale: la maschera di Bahtinov. Questa maschera è un dispositivo che aiuta a mettere a fuoco con facilità e precisione gli oggetti osservati con un telescopio.

Le maschere per la messa a fuoco sono dei cartoncini opachi con dei fori o delle fenditure che si mettono davanti all’apertura del telescopio e che creano delle figure particolari nell’immagine in uscita dall’oculare.

Storia e funzionamento

L’inventore è un astrofotografo di nome Pavel Bahtinov che perfezionò maschere già esistenti( maschera di Hartmann ) ispirandosi ai fenomeni di diffrazione. Quando le maschere hanno fori poligonali (es. buchi triangolari) l’immagine che si ottiene produce dei raggi o spike radiali all’oggetto. Se gli spike sono sottili e simmetrici allora l’oggetto è perfettamente a fuoco.

Il principale problema con le maschere esistenti era la scarsa intensità dei raggi e la conseguente difficoltà a mettere a fuoco i corpi celesti. Il problema viene risolto da Bahtinov con una maschera divisa in tre settori. Ogni settore presenta una serie di fenditure rettangolari regolari: il primo settore occupa metà maschera, gli altri due sono inclinati di ± 40° e occupano rispettivamente un quarto della maschera.

Maschera di Bahtinov con stampa 3D
maschera di Bahtinov
visione di una stella con maschera di bahtinov

L’immagine di una stella vista con il telescopio che monta la maschera di Bahtinov consiste in tre raggi che si intersecano: il primo raggio (principale) e due raggi a forma di X (secondari). I tre raggi devono intersecarsi nello stesso punto ed essere sottili. Il punto di intersezione rappresenta il corpo celeste di interesse messo perfettamente a fuoco.

Progettazione 3D della maschera di Bahtinov

*Per ottenere questo utile strumento per la messa a fuoco non occorre una spesa esorbitante o degli attrezzi stravaganti, basta semplicemente: un cartoncino nero da disegno, una matita, un righello e un paio di forbici.

Si disegna la maschera (GENERATORE MASCHERE GRATIS Emout.Shop) sul cartoncino e si ritagliano tutte le fenditure e i contorni con le forbici stando attenti ad ottenere tagli netti e puliti. Questo lavoro però richiede una pazienza non indifferente perciò vi proponiamo un modo alternativo, stampare la maschera in 3D .

Innanzitutto si immettono i parametri nel generatore di maschere (GENERATORE MASCHERE GRATIS Emout.Shop) e si genera l’immagine desiderata che viene esporta in formato SVG sul computer con l’apposito tasto. Si apre il software di modellazione grafica 3D(es. Fusion 360 ) e si importa su uno schizzo l’immagine SVG precedentemente scaricata.

Si estrude lo schizzo di uno spessore di almeno 1 mm e si esporta l’intero progetto come mesh STL da inviare allo slicer per la stampa 3D (es. CURA). Si stampa l’oggetto in PLA nero e una volta pronto si pone all’entrata del telescopio.

Intervista a Pavel Bahtinov

Makers ITIS Forlì: https://www.makers-itis-forli.it 

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

La curcumina è fluorescente

La curcumina è fluorescente

La curcumina è un pigmento fluorescente contenuto nella curcuma, ha molti utilizzi in chimica organica, inorganica e analitica.

La pianta Curcuma Longa può contenere dal 2-9% di curcuminoidi che includono: la curcumina, demetossicurcumina, bis-demetossicurcumina e curcumina ciclica.
La prima estrazione della molecola risale al 1815 mentre la sintesi viene raggiunta 100 anni dopo dal chimico Wiktor Lampe.

Struttura

La curcumina è una molecola simmetrica che presenta 2 gruppi funzionali principali: dichetone α-β insaturo e due o-metossi fenoli.
Nello stato cristallino la molecola assume una configurazione cis-enolica, mentre in soluzione prevale la configurazione trans.

Estrazione*

La curcumina si estrae con un estrattore Soxhlet ed un solvente polare : acetone, etanolo, ecc…

L’estrattore Soxhlet è un estrattore discontinuo in vetro per estrazioni solido-liquido perciò è uno strumento molto usato ed utile nei laboratori di chimica.

Funziona in modo autonomo attraverso dei cicli di riempimento e svuotamento da parte di un sifone laterale tuttavia è sempre bene accertarsi che il solvente non fugga dal condensatore.

Una volta conclusa l’estrazione si procede allontanando il solvente per evaporazione.

Reattività e proprietà chimiche

È una molecola poco solubile in acqua e cambia colore da giallo a rosso se il pH aumenta. Assume inoltre un colore rosso intenso se addizionata con acido solforico concentrato.

Questa molecola può partecipare a reazioni di ossidazione, addizione 1-4 di Michael ed idrolisi.

La curcumina è fluorescente

La curcumina è fluorescente

La curcumina è una molecola fluorescente che assorbe sia nel visibile che nell’UV perciò molte tecniche di analisi spettrofotometriche sfruttano questa molecola per la determinazione di elementi come il Boro. La tecnica di analisi più sensibile è la spettroscopia di fluorescenza (400-450 nm) che arriva fino ad 1ng/mL.
È un forte legante bidentato che complessa metalli con stechiometria 2:1, 3:1 (legante:metallo) formando complessi planari quadrati e ottaedrici perciò è studiata anche nella chimica dei complessi.

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Makers ITIS Forlì: https://www.makers-itis-forli.it 

Il test del Biureto

Il test del Biureto

Il test del biureto serve per la determinazione delle proteine. Ma a cosa ci serve identificare le proteine? Lo studio delle proteine mutate nell’organismo può portarci ad una diagnosi precoce delle patologie tumorali.

Le proteine sono macromolecole formate da amminoacidi, sono di importanza cruciale per il nostro corpo in quanto svolgono molte funzioni:

    • strutturale
    • catalitico / enzimatico
    • di neurotrasmettitori
    • per la risposta immunitaria

Cos’è il biureto?

Il biureto è un composto chimico risultante dalla condensazione di due molecole di urea. È un solido bianco, solubile in acqua calda, che si ottiene riscaldando l’urea a 180 °C. Durante la sintesi si libera ammoniaca sotto forma di gas.

Sintesi del biureto*

Si pone una punta di spatola di urea in una provetta e si riscalda su un bunsen. Per controllare la conversione della reazione si pone una cartina tornasole inumidita con acqua sull’imboccatura della provetta che assumerà una colorazione blu a contatto con l’ammoniaca prodotta.

Reattivo per il test

Il reattivo per il test del biureto è composto da una soluzione basica di ioni rame Cu2+. Per stabilizzare il reattivo impedendo la precipitazione di composti di rame si può aggiungere del tartato di sodio. In presenza di peptidi si osserva una colorazione viola dovuta alla formazione di un complesso di rame.

Eseguiamo il test del biureto

Si aggiunge 1mL di NaOH 0,2M e qualche goccia di CuSO4 1% alla provetta contenente il campione da analizzare, se la soluzione si colorerà di viola il test sarà positivo. Sia per il collagene (foglio di colla di pesce) che per il biureto il test sarà positivo indicando la presenza di gruppi peptidici mentre in una provetta contenente zucchero il test sarà negativo.

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Makers ITIS Forlì: https://www.makers-itis-forli.it 

L’alcol è veramente rosa? Decolorazione dell’alcol

L’alcol è veramente rosa? Decolorazione dell’alcol

Se qualcuno ci dice alcol non possiamo non pensare all’alcol rosa che si trova al supermercato. Ma qual’è il vero colore dell’alcol? Affronteremo insieme la decolorazione dell’alcol etilico denaturato.

L’alcol etilico o etanolo è una molecola organica composta da 2 carboni, 1 ossigeno e 6 idrogeni ( C2H6O ).

Si ricava dalla fermentazione alcolica da parte dei lieviti di materia organica contenente zuccheri.

È una sostanza volatile, infiammabile ed incolore che brucia con una fiamma azzurra*.

In commercio è reperibile sia come alcol per uso alimentare che come alcol denaturato di colore rosa.

Decolorazione dell’alcol rosa

Una bottiglia di alcol denaturato contiene i seguenti composti:

    • alcol
    • acqua
    • metil-etilchetone (denaturante)
    • tiofene (maleodorante)
    • reactive red (colorante)
    • benzoato di denatonio (inasprente)

Per allontanare il colorante che dona il tipico colore rosa si ricorre alla tecnica dell’adsorbimento. Si disperde nell’alcol un solido inerte (che non reagisce) che possiede una grande superficie, il più comune è la polvere di carbone attivo. Le particelle di carbone attivo presentano un enorme quantità di insenature e pori che intrappolano le molecole molto grandi di colorante e lasciano indisturbate le molecole più piccole come l’alcol, l’acqua ed il tiofene. Una volta filtrato il liquido si presenterà incolore mentre  la polvere di carbone conterrà il colorante. L’alcol decolorato può essere usato per molti esperimenti di chimica come la cromatografia.

La decolorazione dell’alcol etilico secondo i makers.

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

pH del cavolo!!!

pH del cavolo!!!

Molti studenti di chimica i primi anni avranno pronunciato la stessa frase riportata nel titolo con una accezione diversa da quella che affronteremo in questa pagina.

Per chi non lo sapesse il pH è la misura dell’acidità di una soluzione, in particolare è l’opposto del logaritmo della concentrazione di ioni H+ (protoni) presenti in essa. Non scendiamo in ulteriori dettagli di teoria risparmiando ai lettori molte formule matematiche soporifere.

I chimici per misurare il pH ricorrono a delle sostanze chiamate indicatori, essi hanno la particolarità di cambiare il proprio colore a seconda della concentrazione di H+ che le circondano. Queste sostanze riescono a percepire i protoni in soluzione in quanto esse stesse sono degli acidi o delle basi, ma sono molto deboli. Gli indicatori usati nei laboratori chimici sono solitamente sostanze sintetiche come ad esempio la fenolftaleina e il metilarancio.

pH del cavolo!!!

Esistono però anche molecole biologiche che si comportano da indicatori, alcune di esse forniscono il caratteristico colore ad alcuni ortaggi come il cavolo rosso. Tutti almeno una volta ci siamo resi conto che spremendo del succo di limone nel tè questo si schiariva, ciò avviene perché il tè si comporta da indicatore.

Si può perciò usare il colorante estratto dal cavolo rosso per ottenere un indicatore di pH casalingo con cui testare tutte le sostanze che ci circondano.

Esperimento

Tagliamo* il cavolo rosso in pezzi piccoli e facciamolo bollire in acqua per almeno 10 minuti. Con questa operazione estrarremo parte delle sostanze coloranti dal cavolo che andranno a solubilizzarsi in acqua. Passato il tempo necessario si lascia raffreddare il tutto e si procede allontanando il liquido dai pezzi di cavolo mediante una filtrazione, per questo passaggio si può usare un colino o uno scolapasta. Da questo momento il liquido potrà essere usato come indicatore di pH. In base alla quantità di acqua e di cavolo usati in partenza si può decidere se diluire o meno il liquido filtrato nell’ ultimo passaggio.

Per verificare il pH di una sostanza basterà porne una piccola quantità in un bicchiere ed aggiungere qualche goccia di indicatore. L’ intensità del colore dipenderà dalla quantità di indicatore miscelata con il campione analizzato. In questo caso il succo di cavolo assumerà un colore rosso a contatto con sostanze acide (pH basso) ed un colore blu-verde a contatto con sostanze basiche(pH alto).

Lo stesso esperimento può essere ripetuto con altri tipi di ortaggi colorati e i petali di geranio.

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.