Riaccendere una candela a distanza

Riaccendere una candela a distanza

Si può riaccendere una candela a distanza? Sembra una domanda apparentemente sciocca ma che in realtà nasconde una serie di principi fisici e chimici che vi lasceranno a bocca aperta.

Combustione*

Le candele sono una manifestazione della combustione, una reazione chimica di ossidoriduzione tra due componenti: combustibile e comburente. La reazione di combustione è esotermica cioè produce calore, oltre a questo però si produce luce e prodotti di scarto. La reazione di combustione non parte in maniera spontanea perciò necessita di un innesco cioè una fonte di energia. Una volta innescata, questa reazione spontanea procede fino ad esaurire uno dei reagenti (combustibile o comburente).

La combustione è una reazione che ossida il combustibile e riduce il comburente. Se prendiamo come esempio la combustione degli idrocarburi (combustibile) in ossigeno (comburente) otterremo come prodotti l’anidride carbonica (CO2 ) in cui il carbonio è ossidato e l’acqua(H2O) in cui l’ossigeno è ridotto. Una rappresentazione schematica della combustione è il triangolo del fuoco.

Come funzionano le candele

Le candele sono sorgenti luminose formate da un filamento centrale di cotone intrecciato detto stoppino immerso in un combustibile che può essere della cera.
La cera dal punto di vista chimico è un insieme di esteri, acidi saturi e alcoli con catene da 14 a 30 carboni. Sono sostanze che sono malleabili a temperatura ambiente, si sciolgono a 45°C in fluidi a bassa viscosità. Le cere possono essere naturali o artificiali ma rimangono comunque sostanze idrofobe che formano strati idrorepellenti.

Lo stoppino ricoperto di cera viene incendiato, la cera evapora dallo stoppino e insieme all’ossigeno dell’aria alimenta la fiamma producendo luce e calore. Il calore della fiamma scioglie l’estremità superiore della candela che per capillarità mantiene lo stoppino imbibito di combustibile. La cera fusa viene trattenuta sulla parte superiore della candela da uno “scodellino” di cera solida raffreddata dalla corrente ascensionale di aria aspirata dalla fiamma.

Composizione dei fumi delle candele

La composizione dei fumi di una candela cambia con il passare del tempo. Teoricamente una combustione ideale produce acqua e anidride carbonica ma in realtà la reazione di combustione non ossida completamente il combustibile e crea dei sottoprodotti con stato di ossidazione meno elevato.

La combustione continua di una candela forma maggiormente anidride carbonica, vapore acqueo e particelle di sali inorganici. Lo stoppino disperde particelle di sali inorganici molto fini perché è ricoperto di ritardanti di fiamma che servono a far durare di più la candela.

Durante la fase di spegnimento della candela si liberano particelle grandi di materia organica non bruciata e fuliggine. Questo fumo costituisce una miscela potenzialmente infiammabile che sfruttiamo per riaccendere una candela a distanza.

Trasporto delle particelle nel fumo

Tutti i prodotti della combustione della candela sono trasportati verso l’alto dal meccanismo della convezione. La fiamma crea una corrente di aria ascensionale che parte dalla base della candela e si alza verso l’alto. Questa corrente di aria calda si alza perché ha una densità minore dell’aria circostante.
Spegnendo una candela tutte le particelle e la cera vaporizzata sono trasportati dalla corrente di aria calda formando una sorta di scia infiammabile.
Se con un innesco (una fiamma libera di un accendino) incendiamo l’estremità di questa scia, la fiamma incendia l’intera striscia di fumo fino ad arrivare allo stoppino.

Esperimento

Accendiamo una candela e svuotiamo la riserva di cera liquida che si forma alla base dello stoppino. Spegniamo la candela con un soffio deciso dall’alto verso il basso. Avviciniamo una fiamma alla scia di fumo che si sarà formata a pochi centimetri dallo stoppino, se il fumo è abbastanza denso e carico di sostanze infiammabili la fiamma riaccenderà la candela ripercorrendo la striscia di fumo.

Makers ITIS Forlì: https://www.makers-itis-forli.it 

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Apparecchio per il punto di fusione

Apparecchio per il punto di fusione

L’apparecchio per il punto di fusione è uno strumento tra i più economici in un laboratorio di chimica organica che permettono l’analisi di sostanze. Questo apparecchio permette di determinare la temperatura di fusione dei campioni presi in esame. Il tipo di analisi svolta è distruttivo perciò il campione non potrà essere recuperato, inoltre la sostanza incognita deve essere allo stato solido e privo di solventi o umidità. In un laboratorio casalingo non potrà certo mancare uno strumento di così facile costruzione in grado di restituire l’analisi dei prodotti sintetizzati.

Costruiamo il nostro strumento

interno dello strumento

Lo strumento è costruito interamente da materiale di riciclo ciò significa che ogni persona che volesse riprodurre* questo lavoro è libera di usare oggetti differenti da quelli descritti, sempre rispettando la compatibilità elettrica tra il vari componenti.

Lo strumento è composto da quattro componenti principali:

        • termometro digitale (TMAX almeno 200 °C)
        • saldatore elettrico per stagno (30 W)
        • varialuce SCR (2000 W)
        • blocco di alluminio portacampioni

Termometro digitale

Il termometro digitale utilizzato nel progetto ha una risoluzione di 0,1 °C e sfrutta una termocoppia di tipo K in grado di raggiungere temperature elevate senza alcun problema. Il diametro della sonda è 1.5 mm perciò è in grado di entrare perfettamente in un foro da 2 mm. 

Blocco portacampioni

blocco portacampioni

Il blocco è ricavato da un tondino di alluminio lavorato secondo il progetto posto a lato. I tre fori superiori da 2,5 mm serviranno per contenere i capillari portacampioni, il foro da 2 mm servirà per contenere la punta del termometro (diametro variabile a seconda del termometro), il foro da 15 mm permetterà la visione dei capillari durante l’esperimento. A seconda del diametro della punta del saldatore utilizzato si modificherà anche il diametro del foro laterale passante da 5 mm. Per la lavorazione del tondino saranno necessari: lima, trapano con punte per metallo, seghetto per metalli e lubrificante da taglio.

Saldatore elettrico

Il saldatore svolgerà il ruolo dell’elemento riscaldante trasmettendo il calore al blocco di alluminio. Si innesta la punta dentro al blocco portacampioni e si collega l’alimentazione in serie al varialuce SCR. 

Varialuce SCR

Collegato in seria all’alimentazione dell’intero strumento il varialuce svolgerà il compito di moderatore di potenza regolando la velocità di riscaldamento e la temperatura massima raggiunta.

Si completa lo strumento inserendo tutti i componenti in un contenitore resistente alle alte temperature,  con una lente di ingrandimento ed una lampadina che permetteranno una più semplice osservazione dei campioni. Si può aggiungere una ventola da computer che verrà accesa dopo la conclusione dell’esperimento permettendo un raffreddamento più rapido dell’apparecchio.

Eseguire le letture

fusione del campione

Solitamente si riporta un range di temperatura di 1-2 °C per le sostanze pure, il punto di inizio della fusione corrisponde all’aggregazione delle prime goccioline di liquido sul fondo del capillare mentre la fine della fusione corrisponde alla completa scomparsa della fase solida. Campioni che presentano delle impurità avranno un range di fusione più ampio e una temperatura di fusione inferiore a quella teorica.

Per verificare se un campione incognito coincide con una sostanza standard si può procedere nel seguente modo:

    • miscelare in parti uguale la sostanza incognita con lo standard
    • riempire 2-3 mm un capillare con la miscela ottenuta
    • misurare il punto di fusione

Se il campione coincide con la sostanza standard si misurerà una temperatura di fusione uguale a quella teorica dello standard ed un range di temperatura ristretto, se le due sostanze sono differenti si misurerà una temperatura inferiore a quella teorica dello standard e un range di fusione largo.

Calibrazione dello strumento

Per calibrare lo strumento si impiegano i seguenti standard (opportunamente purificati) reperibili in casa:

  •  

Per correlare la temperatura letta con quella teorica si ricorre ad una retta di calibrazione con il metodo dei minimi quadrati (mediante Foglio di calcolo elettronico).

Con questo noi maker vi proponiamo il nostro apparecchio per il punto di fusione con materiale di riciclo.

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Makers ITIS Forlì: https://www.makers-itis-forli.it