Il giroscopio e l’effetto giroscopico

Il giroscopio e l’effetto giroscopico

Il giroscopio è un oggetto che, messo in rotazione, è in grado di mantenere la direzione dell’asse di rotazione invariato.
Ne sono lampante esempio le trottole. Fin tanto che ruotano ad una certa velocità sono in grado mantenere il proprio asse di rotazione perpendicolare al suolo.
Quando le trottole iniziano a rallentare si manifesta un altro fenomeno tipico degli oggetti in rotazione come il giroscopio chiamato precessione. Infatti l’asse di rotazione della trottola si inclina e inizia a ruotare in senso opposto alla rotazione della trottola.

Ciò che avviene ad un trottola è parzialmente esplicativo degli effetti giroscopici. Parzialmente perché nonostante la precessione sia facile da notare esiste un ulteriore fenomeno che appare detta nutazione

Perché l’asse di rotazione del giroscopio ha direzione invariata?

Quando la trottola gira velocemente, la direzione dell’asse rimane invariata. Questo avviene per una legge fisica detta di conservazione del moto angolare.
Matematicamente parlando il momento (M) applicato sul corpo è dato dal suo momento di inerzia (I) e accelerazione angolare(α).

M=Iα

In parole semplici, grazie alla massa in rotazione ad una velocità relativamente alta, il corpo non cade e fin tanto che la velocità sarà sufficiente e non ci saranno disturbi esterni, continuerà a girare senza variare ala direzione dell’asse di rotazione.

Precessione del giroscopio

Quando la trottola perde energia, ossia rallenta, si inclina e inizia a girare. Quindi oltre alla rotazione attorno all’asse centrato con la punta inferiore e superiore della trottola inizia a girare attorno ad un altro asse passante solo per la punta a contatto con il terreno.

Questo moto è detto di precessione. Da notare che la rotazione di precessione ha verso opposto a quella della trottola. A livello matematico capire velocità e angolo di inclinazione della trottola è abbastanza complesso ma il momento applicato alla trottola può essere espresso grazie al lavoro complessivo (L) e alla velocità angolare di precessione (ΩP):

M=ΩP x L

Nutazione del giroscopio

La nutazione di un corpo in rotazione è molto difficile da notare ad occhio. Questo perché consiste in piccole “vibrazioni” nel moto di precessione. Avviene anche in una trottola, ma generalmente lo si nota negli ultimi istanti prima che cada e non ci si fa troppo caso.

Se si immagina la traiettoria percorsa dalla punta superiore di una trottola, ossia circa una circonferenza, con una nutazione evidente si noterà la punta oscillare attorno a questa traiettoria immaginaria.

Questo fenomeno è dovuto alla combinazione del moto di rotazione della trottola e della precessione.

Dove troviamo l’effetto giroscopico?

Oltre per utilizzi particolari come la girobussola, un dispositivo che permette un’alta precisione nell’indicare il nord magnetico per aeromobili e navi, è un fenomeno che si manifesta molto spesso. Banalmente in bicicletta o in moto, è più facile stare in equilibrio su questi mezzi quando sono in movimento, ossia quando le ruote girano, piuttosto che da fermi.

In alcuni casi specifici l’effetto giroscopio è indispensabile, ad esempio nelle moto. Una moto con una grade velocità in percorrenza di curva e grande angolo di piega necessita di muovere il manubrio nel senso opposto alla curva. Così facendo l’effetto giroscopico permette il controllo della moto.

In altri casi invece l’effetto giroscopico può essere un grosso deficit che va compensato, ad esempio negli elicotteri dove l’effetto giroscopico secondario, la precessione, e terziario, la nutazione, va compensato dal pilota o da sistemi elettronici avanzati per garantire un volo confortevole ed efficiente.

Questo fenomeno coinvolge un po’ tutti da vicino anche se spesso passa inosservato e spero che dopo questo articolo ci si riesca a fare più caso a questo fantastico fenomeno fisico.

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Makers ITIS Forlì: https://www.makers-itis-forli.it 

La Portanza

La Portanza

Come facciamo a volare? Com’è possibile che velivoli da tonnellate di chilogrammi siano in grado di staccarsi da terra?
A parte nei casi di razzi, aerostati (ad esempio mongolfiere) e particolari velivoli militari il volo è concesso grazie alla portanza. Questi velivoli sono definiti aerodine.

Questi velivoli sfruttano l’interazione tra l’aria e un corpo da cui nasce una forza aerodinamica. La resistenza aerodinamica e la portanza sono due delle componente della forza aerodinamica

La portanza è definita come la componente della forza aerodinamica perpendicolare alla direzione del vento relativo. Quindi se non c’è vento e l’aeromobile avanza come nell’immagine la portanza sarà rappresentata dalla freccia verde sopra l’ala.

Per generare portanza è necessaria una forma particolare che sarà diversa a seconda delle velocità per cui è studiato il velivolo.
Ogni corpo aerodinamico è caratterizzato da dei coefficienti e questi compaiono nelle formule più semplici della portanza e della resistenza aerodinamica:

Come si vede dalla formula la portanza dipende dalla densità dell’aria (ρ), la superficie, in pianta, del corpo considerato (S), da un coefficiente detto di portanza (Cp) ma soprattutto dalla velocità (V), con un contributo quadratico.
Il coefficiente di portanza dipende dalla forma del corpo e dalla sua posizione rispetto al vento relativo. Ad esempio la portanza generata dall’ala di un aereo se va in avanti è superiore rispetto allo stesso aereo che si muove (ipoteticamente) all’indietro.

Ala fissa

Un aereo, definito aerodina ad ala fissa, genera portanza grazie ai motori che, generando spinta, accelerano l’aereo. Quando la velocità è tale per cui la portanza generate dall’ala è maggiore del peso del velivolo, questo potrà decollare.

Ala rotante

Anche un’aerodina ad ala rotante, ad esempio un elicottero, un quadricottero, un aerogiro, eccetera, vola grazie alla portanza. In questi casi però si ha un’ala o più (dette solitamente pale) che ruotano attorno ad un asse. In questo caso il vento relativo dipende prevalentemente dalla velocità rotazione delle pale piuttosto che dalla velocità del mezzo.

Automobilismo

Anche nell’ambito dell’automobilismo si sfrutta questa forza. Per auto stradali comuni si cerca di migliorare la forma del veicolo così da ridurre la resistenza all’avanzamento, mentre in ambito sportivo la si usa per avere percorrenze maggiori in curva.

Prendendo uno degli esempi più estremi, in Formula 1 le auto sono dotate di ali e diverse appendici aerodinamiche per avere una portanza negativa, detta deportanza.
Si sfrutta la deportanza per migliorare l’aderenza del veicolo ad alte velocità.

La forza aerodinamica

Ma come si genera la portanza? Come già detto è una componente della forza aerodinamica insieme alla resistenza e dipende dalla forma del corpo. Prendendo in considerazione un profilo aerodinamico che potrebbe essere usato per l’ala di un aereo o le pale di un elicottero, vediamo cosa succede alla velocità.

Le varie linee colorate rappresentano il percorso delle particelle di aria attorno al profilo.
Si nota (da destra a sinistra) che inizialmente sono verdi e attorno al corpo cambiano colore per poi tornare verdi. I colori tendenti all’arancione e rosso rappresentano velocità maggiori rispetto al verde, mentre l’azzurro e il blu velocità minori.
Si vede bene quindi che la velocità sopra il profilo dell’aria è mediamente maggiore rispetto a quella sotto.

Teorema di Bernoulli

Seguendo la formula qui sopra e trascurando il terzo termine (+ρgh), si nota un fenomeno particolare. Con la velocità media (u) che aumenta sopra il profilo, affinché l’equazione rimanga costante, il primo termine (p) ossia la pressione dovrà calare. Quindi essendoci una pressione sotto maggiore rispetto che sopra il profilo, si genera una spinta verso l’alto, la portanza

Ovviamente, a causa dell’attrito e dell’ingombro del profilo si creerà una forza opposta al moto, la resistenza. La combinazione di portanza e resistenza  definisce la forza aerodinamica.

*Makers ITIS Forlì non si assumono alcuna responsabilità per danni a cose, persone o animali derivanti dall’utilizzo delle informazioni contenute in questa pagina. Tutto il materiale contenuto in questa pagina ha fini esclusivamente informativi.

Makers ITIS Forlì: https://www.makers-itis-forli.it 

76° Commemorazione Eccidio di Tavolicci – 19 Luglio 20

76° Commemorazione Eccidio di Tavolicci – 19 Luglio 20

22 luglio 1944: Tavolicci, piccolo borgo isolato vicino a Verghereto, è teatro di una orribile strage con 64 persone trucidate dal IV Battaglione di volontari di polizia italo-tedesca, di cui ben 19 bambini sotto i 10 anni.

La strage, nonostante le ricerche e i processi, resta impunita.

Gli abitanti di Tavolicci, estranei alla Resistenza attiva, diventano vittime di una operazione di sterminio calcolata, messa in opera dai tedeschi, che fanno intenzionalmente delle stragi una prassi e un’ideologia.

L’associazione “Casa di Tavolicci, Associazione Amici della Casa”, ogni anno organizza una commemorazione delle vittime di Tavolicci.

Commosso da questa storia, che rimane fuori dai libri di scuola, ho fatto con entusiasmo le riprese con il drone di Tavolicci e ho realizzato il filmato.

Il video raccoglie i momenti più emozionanti della giornata.
Buona visione.

Per approfondimenti, vi lascio i seguenti link:

Istituto storico di Forlì-Cesena – Tavolicci

Facebook: Casa di Tavolicci, Associazione Amici della Casa

Makers ITIS Forlì: https://www.makers-itis-forli.it